

Hanford System Overview

Aluminum and Chromium Leaching for HLW Sludge Workshop Atlanta, GA

Paul Certa
Tom Crawford

January 23-24, 2007

Hanford Tank Waste Treatment System

Hanford Sludge Washing, Leaching, and Oxidative Leaching Modeling

Conceptual Model - HLW Focus

Best-Basis Inventory

- The official database for SST and DST waste inventories
- Accessible through TWINS
- Integrates characterization data, process knowledge, and surveillance data to estimate tank inventories for 177 tanks, 25 chemicals, 46 radionuclides and supplemental analytes
- Presents volume, inventory, and concentration values by phase
 - Supernatant, Saltcake (solid and liquid), Sludge, Retained Gas
 - Sludge/Saltcake designation based on chemical composition of samples (if available) or by tank process history
- Projects uncertainty estimates for sample-based inventories
- Updated quarterly for transfers and new data
- All data evaluated for quality and representativeness
 - Core data may be subdivided if waste layers can be identified
- All updates go through rigorous review process

Hanford Tank Chemical Inventory

151,653 Metric Tons

Total in All Tanks

Single-Shell Tanks 106,065 Metric Tons Double-Shell Tanks 45,587 Metric Tons

Inventory updated through FY06 Q3, data downloaded from http://twins.pnl.gov Best Basis Summary query on 8/24/06

Waste Types by Tank

Tank waste is a complex mixture of multiple waste streams from various facilities, using flowsheets and feed stock that evolved over time.

Al in HLW Solids

Cr in HLW Solids

Factors Influencing the Delivered Feed Composition

- Waste Inventory
 - Starting Waste Inventory (BBI)
 - Waste sent to supplemental treatment or packaging
- Tank-specific retrieval process and technology
 - Water vs Supernate recycle
 - Caustic addition
 - Non-Homogeneous Retrieval
- Solid Liquid Equilibrium
 - Water wash factors used to approximate SLE
 - Precipitation of solids (not in lifecycle model)
 - Evaporator operation
- Blending
 - Incidental
 - Intentional
 - Segregation

Wash and Leach Factor Limitations

- Zero-order approximation to complex solid-liquid equilibrium.
- Unidirectional
 - Does not predict precipitation
- Inconsistencies
 - Washed or leached anions and cations do not necessarily balance.
- Retrieval approaches confound the application of wash factors or differential leach factors
 - Non-homogeneous retrieval
 - Amount of water, recycled supernate and/or caustic used)

HLW Glass vs Degree of Pretreatment

Typical HLW Glass Drivers

Table 8. Summary of Case 13 (Realized Blend Subcase) Glass Drivers.

- Taken from RPP-RPT-26040 Rev 0.
- Circa 2005 Tank Inventory.
- Excludes TRU tank waste and IMUSTs.
- Relaxed Glass Formulation Model.
- Updated Al, Cr, PO4 and SO4 wash and leach factors
- Oxidative leaching for Cr removal.
- Incidental blending of waste.

24	Constraints ¹		Number of waste feed batches	Waste oxide mass ² (MT)	Glass mass (MT)	Waste loading in glass ³
		SO ₃	496	3,003	10,060	0.30
	Calubility limited	P ₂ O ₅	65	385	1,298	0.30
	Solubility limited	Cr ₂ O ₃	0	0	0	n/a
		Subtotal	561	3,388	11,358	0.30
Glass	1	Al ₂ O ₃	338	2,110	6,946	0.30
composition constraints		Fe ₂ O ₃	52	331	980	0.34
	Model validity limited	Na ₂ O	39	251	601	0.42
	iiiiited	SiO ₂	0	0	0	n/a
		Subtotal	429	2,692	8,527	0.32
	Glass composition	constraints subtotal	990	6,080	19,885	0.31
Glass	Spinel T	L involved	942	5,973	14,627	0.41
property	Spinel T_{L} N	IOT involved	78	500	1,194	0.42
constraints	Glass property c	onstraints subtotal	1020	6,474	15,821	0.41
	Case 13 Realized	Blend subcase total	2010	12,553	35,706	0.35

n/a = not applicable

¹Shaded cells indicate the major constraints that drive HLW glass mass.

²In this table, waste oxides refer to the fully pretreated waste on an oxide basis.

³Represents the weighted average waste loading in the glass from tanks that are limited by the same (or same group of) constraints. Units are mass fraction.

Key Wash and Leach Factor References

Recommend wash and leach factors

- HNF-3157, Rev 0A, 1999, Best-Basis Wash and Leach Factor Analysis
- PNNL-11646, 1997, Status Report: Pretreatment Chemistry Evaluation FY 1997 – Wash and Leach Factors for the Single-Shell Tank Waste Inventory
- RPP-10222, 2003, Chromium Wash and Leach Factors
- RPP-11079, 2003, Aluminum Wash and Leach Factors
- RPP-15552, 2003, Hanford Waste Tank Oxidative Leach Behavior Analysis
- RPP-21807, 2004, Strontium-90 Liquid Concentration Solubility Correlation in the Hanford Tank Waste Operations Simulator
- RPP-23329, 2005, Updated Technetium-99 Wash Factors for Hanford Site Tank Wastes
- RPP-25903, 2005, Review of Phosphate and Sulfate Wash and Leach Factors

Sensitivity Studies

- RPP-20003, Rev. 1, 2005, Sensitivity of Hanford IHLW Glass Mass to Chromium and Aluminum Partitioning Assumptions
- RPP-RPT-26040, 2006, Pairwise Blending of High-Level Waste, Appendix D.

Oversight

 D-03-Design-005, 2003, Evaluation of Tank Waste Wash and Leach Factors

Derivation of Best-Basis Inventory Estimates

- Estimates are based on sample data and process knowledge with preference given to sample data
- Sample Based Estimates
 - Calculated directly from tank samples
 - Provides most chemicals and some radionuclides
 - Core Samples
 - Auger Samples
 - Grab Samples
- Process Knowledge Based (Engineering) Estimates
 - Calculated from
 - Waste type templates,
 - Flowsheets,
 - Models and other process records.
 - The Hanford Defined Waste (HDW) model is the source of most radionuclide estimates
 - The HDW model is based on process flowsheets, tank farm records, and ORIGEN2 predictions

Sensitivity of HLW Glass Mass

HTWOS Model Summary

- Simulates Waste Treatment Mission
 - Flows and Mix Streams
 - Partition Streams (Evaporator, IX, S/L Separation, Wash & Leach, Splits or DFs)
 - Rule Based
 - Dynamic (time-varying compositions, discrete events)
- Subject to Constraints
 - Tank Space
 - Production Rates
 - Transfer Rates
 - Equipment Availability
 - Simultaneous Transfers
 - Other Relevant Constraints
- Not Addressed
 - Reaction Kinetics
 - Thermodynamics (S/L Equilibrium)
 - Heat Transfer
 - Certain WTP Details
 - Reliability

Typical HLW Glass Drivers

Table D-3. Summary of Case 13 (No-Blend Subcase) Glass Drivers.

- Taken from RPP-RPT-26040 Rev 0.
- Circa 2005 Tank Inventory.
- Excludes TRU tank waste and IMUSTs.
- Relaxed Glass Formulation Model.
- Updated Al, Cr, PO4 and SO4 wash and leach factors
- Oxidative leaching for Cr removal.
- No Blending of tank waste.

	Constraints ¹		Number of waste feed batches	Waste oxide mass ² (MT)	Glass mass (MT)	Waste loading in glass ³
	,	SO ₃	41	2,107	11,701	0.18
	Solubility limited	P_2O_5	16	710	3,779	0.19
	Solubility liftiled	Cr ₂ O ₃	3	177	318	0.56
		Subtotal	60	2,994	15,798	0.19
Glass	7	Al_2O_3	18	2,551	12,001	0.21
composition constraints	M. J.L. P.P.	Fe ₂ O ₃	13	847	3,135	0.27
Constraints	Model validity limited	Na ₂ O	6	629	2,313	0.27
	iiiiiiou	SiO ₂	3	133	182	0.73
		Subtotal	40	4,1 <mark>60</mark>	17,631	0.24
	Glass composition	constraints subtotal	100	7,154	33,429	0.21
Glass	Spinel <i>T</i>	_L involved	45	3,156	8,747	0.36
property	Spinel $T_{\rm L}$ N	IOT involved	6	339	935	0.36
constraints	Glass property c	onstraints subtotal	51	3,495	9,682	0.36
	Case 13 No-Ble	end subcase total	151	10,649	43,111	0.25
Cas	e 13 Total-Blend su	bcase total	LKE T	10,641	27,080	0.39

Notes:

¹Shaded cells indicate the major constraints that drive HLW glass mass.

²In this table, waste oxides refer to the fully pretreated waste on an oxide basis.

³Represents the weighted average waste loading in the glass from tanks that are limited by the same (or same group of) constraints. Units are mass fraction. n/a = not applicable

200 West Tank Waste Contents

TY-Tank Farm- rense

.

241-545-703 241-545-702 241-545-702 241-545-703 241-54

999599

258

\$ 0 E

201-25-101 201-57-102 201-57-103

SY-Tamk Farm-nov de gjorgeflyst copety to

U-fank Destroy	2	0.00	2011110	241.000	24.5.45	Ŕ	1	Ř	2001-11-11	20171176		207120	207100	200	SOUTH THE	SCHOOL ST	_
					1	1000				1	201				1		
<u>2777</u>	ZZZZ		88		S S	34038		88			Serion	1			_		
				Š		Section					Section	1					
	- News	1	155 155 156			Selling		20			Dillo	1	3				
<u> </u>	1	Ŋ		- 20 20 20				200		0	0000	_				=	_
27	Spemband	Ŋ	2	- T		0	0	0	9	9	9	_	7.7.7		9		_
Para de la companya d	7	0	-								-	0				=	9
The Control County Coun	Spemband	0	0	0		0		0		29	-	0				0 0	9

经表面超过品面的现在现在

Solit die or Septemater in Virgitier (Chiego Handell III Underschieder) (Chiego Handell III Underschieder) (Soudje in Plante Theodoreal Harl Solit die in Plante Theodoreal Harl
--

